Succinct Malleable NIZKs and an Application to Compact Shuffles

نویسندگان

  • Melissa Chase
  • Markulf Kohlweiss
  • Anna Lysyanskaya
  • Sarah Meiklejohn
چکیده

Depending on the application, malleability in cryptography can be viewed as either a flaw or — especially if sufficiently understood and restricted — a feature. In this vein, Chase, Kohlweiss, Lysyanskaya, and Meiklejohn recently defined malleable zero-knowledge proofs, and showed how to control the set of allowable transformations on proofs. As an application, they construct the first compact verifiable shuffle, in which one such controlled-malleable proof suffices to prove the correctness of an entire multi-step shuffle. Despite these initial steps, a number of natural problems remained: (1) their construction of controlled-malleable proofs relies on the inherent malleability of Groth-Sahai proofs and is thus not based on generic primitives; (2) the classes of allowable transformations they can support are somewhat restrictive. In this paper, we address these issues by providing a generic construction of controlled-malleable proofs using succinct non-interactive arguments of knowledge, or SNARGs for short. Our construction can support very general classes of transformations, as we no longer rely on the transformations that Groth-Sahai proofs can support.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crypto Seminar Projects Proposal

from the paper). Non-interactive zero-knowledge proofs (NIZKs) are a powerful cryptographic tool, with numerous potential applications. However, succinct NIZKs (e.g., zk-SNARK schemes) necessitate a trusted party to generate and publish some public parameters, to be used by all provers and verifiers. This party is trusted to correctly run a probabilistic algorithm (specified by the the proof sy...

متن کامل

A new security proof for FMNV continuous non-malleable encoding scheme

A non-malleable code is a variant of an encoding scheme which is resilient to tampering attacks. The main idea behind non-malleable coding is that the adversary should not be able to obtain any valuable information about the message. Non-malleable codes are used in tamper-resilient cryptography and protecting memories against tampering attacks. Many different types of non-malleability have alre...

متن کامل

The existence of Zak transform in locally compact hypergroups

Let K be a locally compact hypergroup. In this paper we initiate the concept of fundamental domain in locally compact hypergroups and then we introduce the Borel section mapping. In fact, a fundamental domain is a subset of a hypergroup K including a unique element from each cosets, and the Borel section mapping is a function which corresponds to any coset, the related unique element in the fun...

متن کامل

Designated Verifier Nizks

Last Time: Simulation Sound NIZKS & Connection to CCA Security. Last time we introduced Simulation-Sound NIZKs, and constructed a 1-Time Simulation Sound NIZK (1-SS NIZK). We then showed how to get CCA secure encryption from CPA encryption and NIZKs in one of two ways: using standard NIZK and n copies of a CPA encryption scheme ([DDN00]) or using 1-SS NIZK and 2 copies of a CPA encryption schem...

متن کامل

Multi-Theorem Preprocessing NIZKs from Lattices

Non-interactive zero-knowledge (NIZK) proofs are fundamental to modern cryptography. Numerous NIZK constructions are known in both the random oracle and the common reference string (CRS) models. In the CRS model, there exist constructions from several classes of cryptographic assumptions such as trapdoor permutations, pairings, and indistinguishability obfuscation. Notably absent from this list...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012